<p style='text-indent:20px;'>We prove the partial Hölder continuity on boundary points for minimizers of quasiconvex non-degenerate functionals</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \mathcal{F}({\mathbf u}) \colon = \int_{\Omega} f(x, {\mathbf u}, D{\mathbf u})\, \mathrm{d}x\, , \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ f $\end{document}</tex-math></inline-formula> satisfies a uniform VMO condition with respect to the <inline-formula><tex-math id="M2">\begin{document}$ x $\end{document}</tex-math></inline-formula>-variable, is continuous with respect to <inline-formula><tex-math id="M3">\begin{document}$ {\mathbf u} $\end{document}</tex-math></inline-formula> and has a general growth with respect to the gradient variable.</p>