This review reports the recent progress and future prospects of wettability gradient surfaces (WGSs), particularly focusing on the governing principles, fabrication methods, classification, characterization, and applications. While transforming the inherent wettability into artificial wettability via bioinspiration, topographic micro/nanostructures are produced with changed surface energy, resulting in new droplet wetting regimes and droplet dynamic regimes. WGSs have been mainly classified in dry and wet surfaces, depending on the apparent surface states. Wettability gradient has long been documented as a surface phenomenon inducing the droplet mobility in the direction of decreasing wettability. However, it is herein critically emphasized that the wettability gradient does not always result in droplet mobility. Indeed, the sticky and slippery dynamic regimes exist in WGSs, prohibiting or allowing the droplet mobility, respectively. Lastly, the stringent bottlenecks encountered by WGSs are highlighted along with solution-oriented recommendations, and furthermore, phase change materials are strongly anticipated as a new class in WGSs. In all, WGSs intend to open up new technological insights for applications, encompassing water harvesting, droplet and bubble manipulation, controllable microfluidic systems, and condensation heat transfer, among others.