2023
DOI: 10.1002/ima.22936
|View full text |Cite
|
Sign up to set email alerts
|

Grading of steatosis, fibrosis, lobular inflammation, and ballooning from liver pathology images using pre‐trained convolutional neural networks

Abstract: This study aims to automatically detect the degree of pathological indices as a reference method for detecting the severity and extent of various liver diseases from pathological images of liver tissue with the help of deep learning algorithms. Grading is done using a collection of pre‐trained convolutional neural networks, including DenseNet121, ResNet50, inceptionv3, MobileNet, EfficientNet‐b1, EfficientNet‐b4, Xception, NASNetMobile, and Vgg16. These algorithms are performed by fine‐tuning the trainable lay… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2025
2025
2025
2025

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 32 publications
0
0
0
Order By: Relevance