Modification of natural polymers for applications in the treatment of waste and surface waters is a continuous concern of researchers and technologists in close relation to the advantages they provide as related to classical polymeric flocculants. In this work, copolymers of starch-graft-polyacrylamide (St-g-PAM) were synthesized by electron beam irradiation used as the free radical initiator by applying different irradiation doses and dose rates. St-g-PAM loaded with ex situ prepared silver nanoparticles was also synthesized by using an accelerated electron beam. The graft copolymers were characterized by chemical analysis, rheology, and differential scanning calorimetry (DSC). The results showed that the level of grafting (monomer conversion coefficient and residual monomer concentration), intrinsic viscosity and thermal behavior (thermodynamic parameters) were influenced by the irradiation dose, dose rate and presence of silver nanoparticles. The flocculation performances of the synthesized copolymers were also tested on water from the meat industry in experiments at the laboratory level. In the coagulation–flocculation process, the copolymer aqueous solutions showed good efficiency to improve different water quality indicators.