ABSTRACT:Results from the grafting of poly(acrylic acid) (PAA) onto cellulosic microfibers and continuous cellulose filaments are presented. The grafting of PAA onto cellulosic fibers offers the possibility of developing enhanced ion exchange and fluid absorbency on the fibers. The grafting of PAA was carried out with a two-step procedure. First, vinyl-terminated ethoxy silane was deposited on the surface of the fiber. This was followed by a grafting polymerization reaction in aqueous media of acrylic acid with different concentrations of potassium persulfate (KPS), which acted as the initiator. The percentage of grafting increased with increasing KPS concentration and reached a maximum value at a concentration of about 0.4 wt % with respect to the weight of the fiber. The grafted copolymer was characterized by Fourier transform infrared spectroscopy. Strong evidence that the grafting reaction was successful was given by the presence of a band, with a maximum at 1732 cm
Ϫ1, that was characteristic of carbonyl group absorption and was not initially present in the cellulosic fibers. The water absorption of the cellulosic microfibers grafted with PAA was three times greater than the water absorption of the nongrafted microfibers. The mechanical properties of continuous cellulose filaments did not change drastically with PAA grafting.