Porous silica coated by a highly hydrophilic and nonionic tentacle-type polymeric layer was synthesized by free radical "grafting from" polymerization of N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]-2-propenamide (TRIS-acrylamide) in partly aqueous solutions. The radical initiator sites were incorporated on the silica surfaces via a two-step reaction comprising thionyl chloride activation and subsequent reaction with tert-butyl hydroperoxide. The surface-bound tert-butylperoxy groups were then used as thermally triggered initiators for graft polymerization of TRIS-acrylamide. The synthesized materials were characterized by diffusive reflectance Fourier transform infrared specotroscopy, X-ray photoelectron spectroscopy, and CHN elemental analysis. Photon correlation spectroscopy was used to determine changes in ζ-potentials resulting from grafting, (29)Si magic angle spinning nuclear magnetic resonance spectroscopy (MAS-NMR) spectroscopy was used to assess the ratio of silanol to siloxane groups in the substrate and the grafted material, and the changes in surface area and mesopore distribution were determined by nitrogen cryosorption. Chromatographic evaluation in hydrophilic interaction chromatography (HILIC) mode showed that the materials were suitable for use as stationary phases, featuring good separation efficiency, a comparatively high retention, and a selectivity that differed from most commercially available HILIC phases. A comparison of this neutral phase with a previously reported N-(2-hydroxypropyl)-linked TRIS-type hydrophilic tentacle phase with weak anion exchange functionality revealed substantial differences in retention patterns.