This study investigated the self-assembly behavior of active telechelic polymers with complex topological structure bydissipative particle dynamics method. Complex topologies include structures with end groups, such as"line", "star" and "tadpole", and structures without end groups, such as"ring", "flower" and "cage". The self-assembly structure distributions of polymers with complex topological structure in different solvent conditions were analyzed. These complex topologies are formed through cross-linking reactions between end groups of active telechelic polymers. The simulation results shown that the topological polymers could self-assemble to form micellar structure such as hollow vesicles, spherical, lamellar, and tubular micelles in dilute solutions. Topological polymers without end groups were more likely to form dense spherical micelles, ellipsoid micelles and vesicle. The "core" formed by the active end groups of telechelic polymers was embedded on the surface and inside of the micelles.The statistical resultscould reveal the conditions and self-assembly mechanism of selfassembled micelle structure of various topological polymers. The results of computer simulation research can open up research ideas in experimental scientific design and preparation of complex topological polymers. The results can provide theoretical support for obtaining thermodynamically stable self-assembled structure and support the development of new materials.