Let $$B_n$$
B
n
be the unit ball in "Equation missing" with the Bergman metric g and h is the Bergman metric on $$B_m$$
B
m
. Let $$u: (B_n, g)\rightarrow (B_m, h)$$
u
:
(
B
n
,
g
)
→
(
B
m
,
h
)
be any harmonic map with $$\phi _0=u|_{\partial B_n}\in C^\infty (\partial B_n, \partial B_m)$$
ϕ
0
=
u
|
∂
B
n
∈
C
∞
(
∂
B
n
,
∂
B
m
)
. In this paper, we provide an asymptotic expansion formula for the above harmonic map u for a large class of $$\phi _0\in C^\infty (\partial B_n, \partial B_m)$$
ϕ
0
∈
C
∞
(
∂
B
n
,
∂
B
m
)
.