Ceramic materials are of technical and commercial interest due to their chemical, mechanical and thermal performance, leading ceramics to meet many engineering requirements. Alumina (aluminum oxide) is one of the primary representatives of this class of materials because of its high fracture toughness, hardness and density, which enable its use in the production of highly critical parts. One such application involves protection against abrasion and erosion wear. The wear properties of a ceramic can be improved not only by controlling its material characteristics but also by controlling the fabrication process, which defines the material's microstructure. Many studies of the effects of the microstructure on these properties have been published. The objective of this study was to review the effects of the microstructure on the erosive wear resistance of alumina-based ceramics. Four factors that control the erosive wear of alumina were identified: (i) the effects of dopants on the diffusivity of the grain boundaries, (ii) the fabrication route, (iii) the sintering mechanisms and (iv) the alumina grain size. The published experimental results related to these topics are described and provide a clear understanding of the erosive wear of alumina.