ALLVAC 718Plus is a new commercial superalloy derived from Inconel 718, but possessing a higher temperature capability whilst employing the same philosophy regarding the microstructure. Many articles have been published describing various heat treatments exploiting the precipitation of intermetallic phases at grain boundaries to optimize the mechanical properties over a range of testing conditions. The requirement to further improve the mechanical properties of this alloy drives our interest in the precipitation mechanism of the delta and eta phases found in this alloy. We report the presence of finely layered structures composed of two phases, delta and eta, with distinct structures and chemistries. Possible pathways to explain this precipitation in 718Plus are considered as follows: (i) the sequential formation of the delta from eta phase and (ii) the simultaneous precipitation of both eta and delta facilitated via solute rejection. Both can result in the formation of those small delta layers observed in HRSTEM. We discuss which is most likely by comparing the relative alignment of the phases by image processing and the analysis of the HRSTEM images, and propose formation mechanisms consistent with the distinctive dislocation structures observed at the interface.