This study aims to analyze the potential of the computer vision (CV) approach to classify eight canola varieties. The input images of eight canola varieties were CON-I, CON-II, CON-III, Pakola, Canola Raya, Rainbow, PARC Canola Hybrid, and Tarnab-III. A digital camera acquired these images on an open sunny day without any complex laboratory setup. First-order histogram features, second-order statistical texture features, binary features, spectral features of three bands were, blue (B), green (G), and red (R), were employed in the artificial neural network (ANN). A 10-fold stratified cross-validation method was used for classification. The best results with accuracy ranging from 95% to 98% observed when the data of regions of interest (512 × 512) deployed to the classifier.