Mn-Co-Ni-O nanoceramic microspheres with high density, uniformity, and size tunability are successfully fabricated using in situ ink-jet printing and two step sintering (TSS) techniques. The microspheres, synthesized by an effective and facile reverse microemulsion method, consist of uncalcined Mn-Co-Ni-O nanocrystallines that show a well formed single tetragonal spinel phase and an average particle size distribution of ≈20 nm. The sintering behavior, microstructure, and electrical properties of the Mn-Co-Ni-O nanoceramic microspheres are systematically investigated and characterized. The results indicate that the sintered Mn-Co-Ni-O nanoceramic microspheres show high density and improved electrical properties. The highest R , B , E , and α values achieved at sintering temperature of 1150 °C are 4846.7 KΩ, 4320 K, 0.401 eV, and -5.24% K , respectively for these Mn-Co-Ni-O nanoceramic microspheres. Furthermore, the formation mechanism of uncalcined Mn-Co-Ni-O nanocrystallines and an analysis of the TSS procedure of the nanoceramic microspheres are discussed.