The well-documented formation of amorphous bands in boron carbide (B 4 C) under contact loading has been identified in the literature as one of the possible mechanisms for its catastrophic failure. To mitigate amorphization, Si-doping was suggested by an earlier computational work, which was further substantiated by an experimental study. However, there have been discrepancies between theoretical and experimental studies, about Si replacing atom/s in B 12 icosahedra or the C-B-C chain. Dense single phase Si-doped boron carbide is produced through a conventional scalable route. A powder mixture of SiB 6 , B 4 C, and amorphous boron is reactively sintered, yielding a dense Si-doped boron carbide material.A combined analysis of Rietveld refinement on XRD pattern coupled with electron density difference Fourier maps and DFT simulations were performed in order to investigate the location of Si atoms in boron carbide lattice. Si atoms occupy an interstitial position, between the icosahedra and the chain. These Si atoms are bonded to the chain end C atoms and result in a kinked chain. Additionally, these Si atoms are also bonded to the neighboring equatorial M A N U S C R I P T
A C C E P T E D ACCEPTED MANUSCRIPT2 B atom of the icosahedra, which is already bonded to the C atom of the chain, forming a bridge like geometry. Si atoms are found to reside around the chain, resulting in a kinked chain. These Si atoms lie close to boron atom of the neighboring icosahedra. Owing to this bonding, distance suggests weak bonding and Si is anticipated to stabilize the icosahedra through electron donation, which is expected to help in mitigating stress-induced amorphization. Possible supercell structures are suggested along with the most plausible structure for Si-doped boron carbide.