2006
DOI: 10.1016/j.jeconom.2005.02.002
|View full text |Cite
|
Sign up to set email alerts
|

Granger causality and the sampling of economic processes

Abstract: This paper provides a discussion of the developments in econometric modelling that are designed to deal with the problem of spurious Granger causality relationships that can arise from temporal aggregation. We outline the distortional effects of using discrete time models that explicitly depend on the unit of time and outline a remedy of constructing time-invariant discrete time models via a structural continuous time model. In an application to testing for money-income causality, we demonstrate the importance… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
43
0
6

Year Published

2009
2009
2018
2018

Publication Types

Select...
5
3
2

Relationship

1
9

Authors

Journals

citations
Cited by 57 publications
(49 citation statements)
references
References 37 publications
0
43
0
6
Order By: Relevance
“…Multivariate diffusion models like the ones considered in this paper have been proposed in finance (Sundaresan, 2000), macroeconomics (Bergstrom, 1990;McCrorie and Chambers, 2006), and macro-finance (Piazzesi, 2009).…”
Section: Introductionmentioning
confidence: 99%
“…Multivariate diffusion models like the ones considered in this paper have been proposed in finance (Sundaresan, 2000), macroeconomics (Bergstrom, 1990;McCrorie and Chambers, 2006), and macro-finance (Piazzesi, 2009).…”
Section: Introductionmentioning
confidence: 99%
“…Analyses of the GG approach applied to more general processes, such as neural spiking data (2, 3), continuous-time processes (26), and systems with exogenous inputs and latent variables (4,27), have been shown to produce results inconsistent with the known functional structure of the underlying system. These examples illustrate the perils of applying GG causality in situations where the generative system is poorly approximated by the vector autoregressive (VAR) model class.…”
mentioning
confidence: 99%
“…Można udowodnić [McCrorie, Chambers, 2006], że jeśli kwartalne obserwacje pewnego procesu są opisane przez model VAR (vector autoregresive), to będą one tożsame z modelem VARMA (o średniej kroczącej o długości 3 okresów) obserwacji danych miesięcznych. Oznacza to, że wpływ agregacji zmiennej po czasie może niekorzystnie wpłynąć na zależności przyczynowe.…”
Section: Wpływ Przekształceń Matematycznych Szeregów Czasowych Na Wynunclassified