Fluorescence spectra were applied to investigate the structural changes of four dominant dissolved natural organic matter (DOM) fractions of a filtered river water before and after ozonation and catalytic ozonation. The ozonation and catalytic ozonation with synthetic goethite (FeOOH) and cerium dioxide (CeO 2 ) were carried out under normal conditions, i.e. pH 7, reaction time of 10 min, and ozone/DOC ratio of about 1. The fluorescence spectra were recorded at both excitation-emission matrix (EEM) and synchronous scanning modes. EEM results reveal that ozonation of these DOM fractions causes a significant decrease of the aromaticity of humic-like structures and an increase of electron withdrawing groups, e.g., carboxylic groups. The catalysts can further improve the destruction of the humic-like structures in catalytic ozonation. Synchronous spectra reveal that ozonation of hydrophobic acid and hydrophilic acid (HIA) yields a significant amount of by-products with low aromaticity and low molecular weight. Catalytic ozonation enhances substantially the formation of these by-products from HIA and improves the destruction of highly polycyclic aromatic structures for all examined DOM fractions.