Recent progress in the fabrication and application of diverse spherical titania nanostructures, including mesoporous spheres, spherical fl aky assemblies, and dendritic particles of variable diameter and monodispersity in size, is summarized in this article. Utilizing different synthesis strategies, spherical titania nanostructures with tailored polymorphs (including amorphous, anatase, rutile, brookite and TiO 2 -B), particle sizes (from tens of nanometers to millimeters), monodispersity, porosity, and variable surface properties have been produced. Such spherical titania nanostructures show realized and potential applications in the areas of chromatographic separation, lithium-ion batteries, dye-sensitized solar cells, photocatalytic oxidation and water splitting, photoluminescence, electrorheological fl uids, catalysis, gas sensing, and anticancer intracellular drug delivery. Gaining further understanding of both synthesis design and application of these materials will promote the commercialization of such spherical titania nanostructures in the future.