2024
DOI: 10.1109/access.2023.3347592
|View full text |Cite
|
Sign up to set email alerts
|

Graph-Based EEG Signal Compression for Human–Machine Interaction

Takuya Fujihashi,
Toshiaki Koike-Akino

Abstract: Communication of bioelectric signals, such as electroencephalography (EEG) signals, will be a key technology for smooth interaction between users and remote robots. The existing solutions use an orthogonal transform for EEG signal compression, such as Discrete Wavelet Transform (DWT) or Discrete Cosine Transform (DCT). This paper proposes a graph-based compression scheme for EEG signals to improve the quality at the given rate. The proposed scheme constructs a graph from the positions of the EEG sensors and ad… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 38 publications
0
0
0
Order By: Relevance