Graph Convolutional Network Based on CQT Spectrogram for Bearing Fault Diagnosis
Jin Yan,
Jianbin Liao,
Weiwei Zhang
et al.
Abstract:In this paper, a graph convolutional network is constructed and applied for bearing fault diagnosis. Specifically, the constant-Q transform (CQT) is first adopted for spectral analysis of vibration signals, where the frequencies are distributed in the logarithmic scale. Varied frequency resolutions can be obtained to satisfy the spectral resolution requirement and reduce signal dimension. Afterwards, the CQT spectrum is modeled by a graph, where nodes are frequency bins and edges reflect the inner relationship… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.