Graph Convolutional Network for predicting secondary structure of RNA
Dmitry Korkin,
Aukkawut ammartayakun,
Palawat Busaranuvong
et al.
Abstract:The prediction of RNA secondary structures is essential for understanding its underlying principles and applications in diverse fields, including molecular diagnostics and RNA-based therapeutic strategies. However, the complexity of the search space presents a challenge. This work proposes a Graph Convolutional Network (GCNfold) for predicting the RNA secondary structure. GCNfold considers an RNA sequence as graph-structured data and predicts posterior base-pairing probabilities given the prior base-pairing pr… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.