2017
DOI: 10.1111/cgf.13187
|View full text |Cite
|
Sign up to set email alerts
|

Graph Layouts by t‐SNE

Abstract: We propose a new graph layout method based on a modification of the t‐distributed Stochastic Neighbor Embedding (t‐SNE) dimensionality reduction technique. Although t‐SNE is one of the best techniques for visualizing high‐dimensional data as 2D scatterplots, t‐SNE has not been used in the context of classical graph layout. We propose a new graph layout method, tsNET, based on representing a graph with a distance matrix, which together with a modified t‐SNE cost function results in desirable layouts. We evaluat… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
104
0

Year Published

2017
2017
2020
2020

Publication Types

Select...
5
3
1

Relationship

0
9

Authors

Journals

citations
Cited by 91 publications
(119 citation statements)
references
References 54 publications
0
104
0
Order By: Relevance
“…The RVS, BH, and RVS&BH layout algorithms could achieve better layout quality on some graphs with different parameters. For example, Figure shows the dwt_1005 and plat1919 graphs after 300 iterations of the RVS layout algorithm with alpha https://www.overleaf.com/project/5c0c13833b5200372464d136deca α d = 0 and no gravitational force, which appears very similar to layouts produced by other algorithms [OKB16, KRM*17]. However, the goal of this paper is not to tune parameters for specific graph types, but rather to show that RVS has comparable layout quality as BH while achieving substantially faster performance.…”
Section: Discussion and Future Workmentioning
confidence: 74%
See 1 more Smart Citation
“…The RVS, BH, and RVS&BH layout algorithms could achieve better layout quality on some graphs with different parameters. For example, Figure shows the dwt_1005 and plat1919 graphs after 300 iterations of the RVS layout algorithm with alpha https://www.overleaf.com/project/5c0c13833b5200372464d136deca α d = 0 and no gravitational force, which appears very similar to layouts produced by other algorithms [OKB16, KRM*17]. However, the goal of this paper is not to tune parameters for specific graph types, but rather to show that RVS has comparable layout quality as BH while achieving substantially faster performance.…”
Section: Discussion and Future Workmentioning
confidence: 74%
“…HDE [HK02], ACE [KCH02], SSDE [ÇMIBR06], and Pivot MDS [BP06] are fast (e.g. HDE, SSDE, and Pivot MDS are linear time), but they have known issues with preserving neighborhoods [KRM*17] and producing good layouts for tree‐like and other non‐mesh‐like graphs [KRM*17,ÇMIBR06,HJ07]. These algorithms have not been widely adopted, unlike force‐directed algorithms that enjoy widespread adoption in many software packages.…”
Section: Related Workmentioning
confidence: 99%
“…One approach is edge bundling, which routes edges that are related according to some metric of similarity in close proximity [Hol06, HvW09] (see the recent survey by Llhuillier et al [LHT17] for details on edge bundling). The similarity metric is frequently based on the topology of the network [KRM*17], so that edges that have a similar region of origin and destination are bundled together. Edge bundling reduces clutter and makes it easier to detect connectivity patterns in the network [PHT15].…”
Section: Multivariate Network Visualization Typologymentioning
confidence: 99%
“…t-SNE is a non-linear algorithm that captures the global, as well as the local structure of high-dimensional data [18]. t-SNE is one of the best methods for use in dimensionality reduction [21]. t-SNE projects the neighborhood structure of the data in a way that points that are similar will remain closer in the space [18].…”
Section: A Dimensionality Reductionmentioning
confidence: 99%