2024
DOI: 10.3390/genes15040447
|View full text |Cite
|
Sign up to set email alerts
|

Graph Node Classification to Predict Autism Risk in Genes

Danushka Bandara,
Kyle Riccardi

Abstract: This study explores the genetic risk associations with autism spectrum disorder (ASD) using graph neural networks (GNNs), leveraging the Sfari dataset and protein interaction network (PIN) data. We built a gene network with genes as nodes, chromosome band location as node features, and gene interactions as edges. Graph models were employed to classify the autism risk associated with newly introduced genes (test set). Three classification tasks were undertaken to test the ability of our models: binary risk asso… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 49 publications
0
0
0
Order By: Relevance