Graph polynomials associated with Dyson-Schwinger equations
Ali Shojaei-Fard
Abstract:Quantum motions are encoded by a particular family of recursive Hochschild equations in the renormalization Hopf algebra which represent Dyson-Schwinger equations, combinatorially. Feynman graphons, which topologically complete the space of Feynman diagrams of a gauge field theory, are considered to formulate some random graph representations for solutions of quantum motions. This framework leads us to explain the structures of Tutte and Kirchhoff-Symanzik polynomials associated with solutions of Dyson-Schwing… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.