Abstract:In recent days, it is becoming essential to ensure that the outcomes of signal processing methods based on machine learning (ML) data-driven models can provide interpretable predictions. The interpretability of ML models can be defined as the capability to understand the reasons that contributed to generating a given outcome in a complex autonomous or semi-autonomous system. The necessity of interpretability is often related to the evaluation of performances in complex systems and the acceptance of agents’ aut… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.