Distance-based numeric parameters play a pivotal role in studying the structural aspects of networks which include connectivity, accessibility, centrality, clustering modularity, complexity, vulnerability, and robustness. Several tools like these also help to resolve the issues faced by the different branches of computer science and chemistry, namely, navigation, image processing, biometry, drug discovery, and similarities in chemical compounds. For this purpose, in this article, we are considering a family of networks that exhibits rotationally symmetric behaviour known as circular ladders consisting of triangular, quadrangular, and pentagonal faced ladders. We evaluate their upper bounds of fractional metric dimensions of the aforementioned networks.