There is an urgent need for alternative energy resources due to the rapid rise in the price of fossil fuels and the great danger of the increasing greenhouse effect caused by carbon dioxide emission. Sunlight provides by far the largest of all carbon-neutral energy sources. Therefore, the current solar-or photovoltaic-cell-based technologies, which can utilize solar energy, are of extreme importance. Dye-sensitized solar cells (DSSCs) are of particular interest because they can offer a number of advantages when compared to existing photovoltaic technologies. In this review, recent advances in carbonrelated nanomaterials and their application as materials for DSSCs are discussed. Carbon nanomaterials such as carbon nanotubes and graphene display remarkable electrical, thermal, and mechanical properties that enable several exciting applications in DSSCs. The progress on the utilisation of carbon nanotubes, graphene, and their nanocomposites is reviewed as highly prospective materials to replace transparent conductive oxide (TCO) layers and counter electrodes in DSSCs. Moreover, carbon nanomaterials enable improvement of the performance of absorbing layers in working photoanodes by enhancing the light absorption and electron transport across the semiconducting nanostructured fi lm. The application of carbon nanotubes, graphite particles, and graphene as additives towards the improved effi ciency of the electrolyte in these solar cells is also discussed. Finally, a brief outlook is provided on the future development of carbon nanomaterial composites as prospective materials for DSSCs, particularly as components for printable solar cells, which are expected to play an important role in the future solarcell market.