In the past few years, significant research efforts have been directed toward improving the electrochemical capabilities of supercapacitors by advancing electrode materials. The present work signifies the development of poly(lactic acid)/alloysite nano-clay as an electrode material for supercapacitors. Physico-chemical characterizations were analyzed by Fourier transform infrared spectroscopy, wide-angle X-ray diffraction, and a universal testing machine. Cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge–discharge techniques were employed to evaluate electrochemical characteristics. The optimized poly(lactic acid)/halloysite nano-clay film revealed the highest specific capacitance of 205.5 F g−1 at 0.05 A g−1 current density and showed 14.6 Wh kg−1 energy density at 72 W kg−1 power density. Capacitance retention of 98.48% was achieved after 1000 cycles. The microsupercapacitor device presented a specific capacitance of 197.7 mF g−1 at a current density of 0.45 mA g−1 with 10.8 mWh kg−1 energy density at 549 mW kg−1 power density.