Confocal Raman microscopic (CRM) imaging has evolved to become a key tool for spatially resolved, compositional analysis and imaging, down to the μm-scale, and nowadays one may choose between numerous commercial instruments. That notwithstanding, situations may arise which exclude the use of a commercial instrument, e.g., if the analysis involves toxic or radioactive samples/environments; one may not wish to render an expensive instrument unusable for other uses, due to contamination. Therefore, custom-designed CRM instrumentation—being adaptable to hazardous conditions and providing operational flexibility—may be beneficial. Here, we describe a CRM setup, which is constructed nearly in its entirety from off-the-shelf optomechanical and optical components. The original aim was to develop a CRM suitable for the investigation of samples exposed to tritium. For increased flexibility, the CRM system incorporates optical fiber coupling to both the Raman excitation laser and the spectrometer. Lateral raster scans and axial profiling of samples are facilitated by the use of a motorized xyz-translation assembly. Besides the description of the construction and alignment of the CRM system, we also provide (i) the experimental evaluation of system performance (such as, e.g., spatial resolution) and (ii) examples of Raman raster maps and axial profiles of selected thin-film samples (such as, e.g., graphene sheets).