Due to the drawbacks in commercially known lithium-ion batteries (LIB) such as safety, availability, and cost issues, aluminum batteries are being hotly pursued in the research field of energy storage. Al being abundant, stable, and possessing high volumetric capacity has been found to be attractive among the next generation secondary batteries. Various unwanted side reactions in the case of aqueous electrolytes have shifted the attention toward nonaqueous electrolytes for Al batteries. Unlike LIBs, Al batteries are based on intercalation/deintercalation of ions on the cathode side and deposition/stripping of Al on the anodic side during the charge/discharge cycle of the battery. Hence, to provide a clear understanding of the recent developments in Al batteries, we have presented an overview concentrating on the choice of suitable cathodes and electrolytes involving aluminum chloride derived ions (AlCl 4 − , AlCl 2 + , AlCl 2+ , etc.). We elaborate the importance of innovation in terms of structure and morphology to improve the cathode materials as well as the necessary properties to look for in a suitable nonaqueous electrolyte. The significance of computational modeling is also discussed. The future perspectives are discussed which can improve the performance and reduce the manufacturing cost simultaneously to conceive Al batteries for a wide range of applications.