Graphene oxide is a compound with a form similar to graphene, composed of carbon atoms in a sp2 single-atom layer of a hybrid connection. Due to its significant surface area and its good mechanical and thermal stability, graphene oxide has a plethora of applications in various scientific fields including heterogenous catalysis, gas storage, environmental remediation, etc. In analytical chemistry, graphene oxide has been successfully employed for the extraction and preconcentration of organic compounds, metal ions, and proteins. Since graphene oxide sheets are negatively charged in aqueous solutions, the material and its derivatives are ideal sorbents to bind with metal ions. To date, various graphene oxide nanocomposites have been successfully synthesized and evaluated for the extraction and preconcentration of metal ions from biological, environmental, agricultural, and food samples. In this review article, we aim to discuss the application of graphene oxide and functionalized graphene oxide nanocomposites for the extraction of metal ions prior to their determination via an instrumental analytical technique. Applications of ionic liquids and deep eutectic solvents for the modification of graphene oxide and its functionalized derivatives are also discussed.