In the past decade, studies on the biomedical applications of graphene quantum dots (GQDs) have increased substantially, especially those related to cancer therapy. Experimental evidence has shown that GQD platforms do not merely serve for drug delivery but have multifunctional properties: their surface also allows several types of molecules to be joined and has photothermal properties that, when combined, make therapies more effective. Most studies have shown evidence of this specificity and therapeutic efficacy at the in vitro level. There is also evidence for potential use in the monitoring of cellular events given the high-quality bioimages that can be obtained with this type of nanomaterial. However, the application of this nanotechnology has stalled due to the lack of available biosafety and biocompatibility studies. This chapter addresses the advances in the use of GQD platforms for drug delivery and the biocompatibility studies reported so far.