Environment-friendly polymer blends of poly(lactic acid) (PLA) and itaconic acid (IA), poly(itaconic acid) (PIA), poly(itaconic acid)-co-poly(methyl itaconate) (Cop-IA), and net-poly(itaconic acid)-ν-triethylene glycol dimethacrylate (Net-IA) were performed via melt blending. The compositions studied were 0.1, 1, 3, and 10 wt% of the diverse chemical architectures. The research aims to study and understand the effect of IA and its different architectures on the mechanical, rheological, and thermal properties of PLA. The PLA/IA, PLA/PIA, PLA/Cop-IA, and PLA/Net-IA blends were characterized by dynamic mechanical thermal analysis, rotational rheometer (RR), thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy. The complex viscosity, storage module, and loss module for the RR properties were observed in the following order: PLA/Cop-IA, PLA/Net-IA, and PLA/PIA > PLA > PLA/IA. Thermal stability improved with increasing concentrations of Cop-IA and Net-IA. In the same way, the mechanical properties were enhanced. In addition, the micrographs illustrated the formation of fibrillar structures for all blends. The crystallinity degree displayed higher values for the blends that contain Net-IA > Cop-IA than IA > PIA. Therefore, IA and its architectures can influence these studied properties, which have potential applications in disposable food packing.