Acrylate based hydrogels are one of the most promising soft biocompatible material platforms that significantly contribute to the delivery of therapeutics, contact lenses, corneal prosthesis, bone cements and wound dressing, and are being explored widely for potential applications in the field of regenerative medicine. A significant number of these materials, which possess excellent water sorption properties, have been supported by the Food and Drug Administration (FDA) of the United States for different applications. Nonetheless, many of their physical and biological properties required for certain biomedical and bioengineering applications are often poor when they are in the hydrated state at the body temperature: tensile/compression performance, water diffusion, antimicrobial activity, antifouling capacity, biological response, porosity for the fabrication of supports or scaffolds for tissue engineering, electrical and/or thermal properties, among other properties. Consequently, new acrylic-based hydrogels have been designed as multicomponent systems such as interpenetrated polymer networks, composites and nanocomposite materials, which have exhibited superior properties able to substantially enhance potential uses of these materials in the biomedical and bioengineering industry.