The notion of approximate fixed point sequence, emphasized in Chidume (Geometric properties of Banach spaces and nonlinear iterations. Lecture Notes in Mathematics, 1965. Springer-Verlag London, Ltd., London, 2009), is a very useful tool in proving convergence theorems for fixed point iterative schemes in the class of nonexpansive-type mappings. In the present paper, our aim is to present simple and unified alternative proofs of some classical fixed point theorems emerging from Banach contraction principle, by using a technique based on the concepts of approximate fixed point sequence and graphic contraction.