2016
DOI: 10.1111/insr.12178
|View full text |Cite
|
Sign up to set email alerts
|

Graphical Tools for Detecting Departures from Linear Mixed Model Assumptions and Some Remedial Measures

Abstract: Summary We review some results on the analysis of longitudinal data or, more generally, of repeated measures via linear mixed models starting with some exploratory statistical tools that may be employed to specify a tentative model. We follow with a summary of inferential procedures under a Gaussian set‐up and then discuss different diagnostic methods focusing on residual analysis but also addressing global and local influence. Based on the interpretation of diagnostic plots related to three types of residuals… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
27
0
11

Year Published

2018
2018
2023
2023

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 32 publications
(38 citation statements)
references
References 71 publications
(143 reference statements)
0
27
0
11
Order By: Relevance
“…Moreover, this review doesn't include works based on graphical tools for model selection if these graphical representations are referred to methods already existent in the literature. This is the case, for example, of Sciandra and Plaia (2018) who adapt an available graphical representation to the class of mixed models, in order to select the fixed effects conditioning on the random part and covariance structure, and of Singer et al (2017) who discuss different diagnostic methods focusing on residual analysis but also addressing global and local influence, giving general guidelines for model selection.…”
Section: Introductionmentioning
confidence: 99%
“…Moreover, this review doesn't include works based on graphical tools for model selection if these graphical representations are referred to methods already existent in the literature. This is the case, for example, of Sciandra and Plaia (2018) who adapt an available graphical representation to the class of mixed models, in order to select the fixed effects conditioning on the random part and covariance structure, and of Singer et al (2017) who discuss different diagnostic methods focusing on residual analysis but also addressing global and local influence, giving general guidelines for model selection.…”
Section: Introductionmentioning
confidence: 99%
“…No Capítulo 5 conduzimos um estudo de simulação para observar o comportamento e a qualidade dos dois critérios na seleção de modelos com diferentes efeitos aleatórios e estruturas de covariância. No Capítulo 6 apresentamos duas aplicações dos critérios de informação na seleção de modelos mistos para dados de crescimento de bezerros [Singer et al (2017)] e para dados de velocidade relativa de transporte mucociliar do palato de sapos [Rocha & Singer (2018)]. Por fim, no Capítulo 7, concluímos com uma discussão sobre as técnicas utilizadas.…”
Section: 0unclassified
“…Os resíduos de efeitos aleatórios, além de ser indicados para detecção de unidades amostrais atípicas, são utilizados para verificação da hipótese de normalidade dos 2.0 efeitos aleatórios. Mais detalhes sobre ferramentas de diagnóstico para modelos lineares mistos podem ser encontrados em Hilden-Minton (1995), Tan et al (2001), Fung et al (2002), Nobre (2004), Nobre & Singer (2007), Nobre & Singer (2011) e Singer et al (2017).…”
Section: Capítulo 2 O Modelo Linear Mistounclassified
See 2 more Smart Citations