2022
DOI: 10.48550/arxiv.2205.13116
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

GraphPMU: Event Clustering via Graph Representation Learning Using Locationally-Scarce Distribution-Level Fundamental and Harmonic PMU Measurements

Abstract: This paper is concerned with the complex task of identifying the type and cause of the events that are captured by distribution-level phasor measurement units (D-PMUs) in order to enhance situational awareness in power distribution systems. Our goal is to address two fundamental challenges in this field: a) scarcity in measurement locations due to the high cost of purchasing, installing, and streaming data from D-PMUs; b) limited prior knowledge about the event signatures due to the fact that the events are di… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 25 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?