“…For this purpose four connectivity models are defined. The diamond model, the square model, and the hexagonal model, for constrained codes were considered by Weeks and Blahut [9], while the triangular model was considered by [8] for constrained codes and other applications in [2].…”
Abstract- (d1, k1, d2, k2) constraint if it satisfies the one-dimensional (d1, k1) constraint horizontally and the one-dimensional (d2, k2) constraint vertically. In this paper we examine the region in which the capacity of the constraints is zero or positive in the various models. We consider asymmetric constraints in the diamond model and symmetric constraints in the other models. In particular we provide an almost complete solution for asymmetric constraints in the diamond model.
“…For this purpose four connectivity models are defined. The diamond model, the square model, and the hexagonal model, for constrained codes were considered by Weeks and Blahut [9], while the triangular model was considered by [8] for constrained codes and other applications in [2].…”
Abstract- (d1, k1, d2, k2) constraint if it satisfies the one-dimensional (d1, k1) constraint horizontally and the one-dimensional (d2, k2) constraint vertically. In this paper we examine the region in which the capacity of the constraints is zero or positive in the various models. We consider asymmetric constraints in the diamond model and symmetric constraints in the other models. In particular we provide an almost complete solution for asymmetric constraints in the diamond model.
“…Spherical codes generated by commutative group codes of orthogonal matrices in even dimensions, 2m, can be determined by a quotient of m-dimensional lattices, where the sublattice has an orthogonal basis [4]. We characterize the construction of sub-lattices in these conditions, from the hexagonal lattice, A2 and compared the minimum distance of spherical code constructed with the limiting of the minimum distance established in [5].…”
Section: Conclusõesmentioning
confidence: 99%
“…Códigos esféricos em dimensão par, gerados por grupos comutativos de matrizes ortogonais, podem ser determinados pelo quociente de dois reticulados na metade da dimensão quando o sub-reticulado é "retangular" (isto é, quando os vetores que o geram são mutuamente ortogonais), [2] e [4]. Assim, o objetivo deste trabalho é a construção de códigos esféricos através do quociente de reticulados, com a finalidade de obter códigos esféricos em que a distância mínima se aproxime do limitante da distância mínima estabelecido em [5].…”
Section: Introductionunclassified
“…Códigos esféricos n-dimensionais gerados por grupos comutativos em dimensão par, n = 2m, podem ser determinados pelo quociente de reticulados m-dimensionais, quando os vetores que geram o sub-reticulado são mutuamente ortogonais [4]. Apresentamos a construção de sub-reticulados nestas condições, a partir do reticulado hexagonal, A2.…”
Resumo. Códigos esféricos n-dimensionais gerados por grupos comutativos em dimensão par, n = 2m, podem ser determinados pelo quociente de reticulados m-dimensionais, quando os vetores que geram o sub-reticulado são mutuamente ortogonais [4]. Apresentamos a construção de sub-reticulados nestas condições, a partir do reticulado hexagonal, A2. Comparamos a distância mínima do código esfé-rico construído através do quociente destes reticulados com o limitante da distância mínima estabelecido em [5].Palavras-chave. Reticulados, códigos esféricos, distância mínima.
“…Several authors investigated the relationship of the suborthogonal with a spherical codes, and with a q-ary codes, see [1,8,13,16,17,18]), but, of course, that does not restrict to these problems ( [2,4,5,12].…”
It is shown that, given any k-dimensional lattice Λ, there is a lattice sequence Λ w , w ∈ Z, with a sub-orthogonal lattice Λ o ⊂ Λ, converging to Λ (up less equivalence), also we discuss the conditions for the faster convergence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.