Ecologists hold two views about the role of herbivory in ecosystem dynamics. First, from a food web perspective in population͞community ecology, consumption by herbivores reduces plant abundance. Second, from a nutrient cycling perspective in ecosystem ecology, herbivory sometimes slows down cycling, which decreases plant abundance, but at other times speeds up cycling, which possibly increases plant abundance. The nutrient cycling perspective on herbivory has been experimentally addressed more thoroughly in aquatic systems than in terrestrial systems. We experimentally examined how grasshoppers influence nutrient cycling and, thereby, plant abundance and plant species composition over a period of 5 years. We examined how grasshoppers influence nutrient (nitrogen) cycling (i) by their excrement, (ii) by changing the abundance of and the decomposition rate of plant litter, and (iii) by both. Grasshoppers may speed up nitrogen cycling by changing the abundance and decomposition rate of plant litter, which increases total plant abundance (up to 32.9 g͞m 2 or 18%), especially, the abundance of plants that are better competitors when nitrogen is more available. However, whether grasshoppers enhance plant abundance depends on how much they consume. Consequently, ecosystems and food web perspectives are not mutually exclusive. Finally, under some conditions, grasshoppers may decrease nutrient cycling and plant abundance.