Recently, the pulsar timing array (PTA) collaborations, including CPTA, EPTA, NANOGrav, and PPTA, announced that they detected a stochastic gravitational wave background spectrum in the nHz band. This may be relevant to the cosmological phase transition suggested by some models. Magnetic monopoles and primordial black holes (PBHs), two unsolved mysteries in the universe, may also have their production related to the cosmological phase transition. Inspired by that, we revisit the model proposed by Stojkovic and Freese, which involves PBHs accretion to solve the cosmological magnetic monopole problem. We further develop it by considering the increase in the mass of the PBHs during accretion and taking the effect of Hawking radiation into account. With these new considerations, we find that solutions to the problem still exist within a certain parameter space. In addition, we also generalize the analysis to PBHs with an extended distribution in mass. This may be a more interesting scenario because PBHs that have accreted magnetic monopoles might produce observable electromagnetic signals if they are massive enough to survive in the late universe.