We examine the double copy structure of anyons in gauge theory and gravity. Using on-shell amplitude techniques, we construct little group covariant spinor-helicity variables describing massive particles with spin, which together with locality and unitarity enables us to derive the long-range tree-level scattering amplitudes involving anyons. We discover that classical gauge theory anyon solutions double copy to their gravitational counterparts in a non-trivial manner. Interestingly, we show that the massless double copy captures the topological structure of curved spacetime in three dimensions by introducing a non-trivial mixing of the topological graviton and the dilaton. Finally, we show that the celebrated Aharonov-Bohm phase can be derived directly from the constructed on-shell amplitude, and that it too enjoys a simple double copy to its gravitational counterpart.