This paper is devoted to investigate the gravitational collapse in the framework of Chern-Simon (CS) modified gravity. For this purpose, we assume the spherically symmetric metric as an interior region and the Schwarzchild spacetime is considered as an exterior region of the star. Junction conditions are used to match the interior and exterior spacetimes. In dynamical formulation of CS modified gravity, we take the scalar field Θ as a function of radial parameter r and obtain the solution of the field equations. There arise two cases where in one case the apparent horizon forms first and then singularity while in second case the order of the formation is reversed. It means the first case results a black hole which supports the cosmic censorship hypothesis (CCH). Obviously, the second case yields a naked singularity. Further, we use Junction conditions have to calculate the gravitational mass. In non-dynamical formulation, the canonical choice of scalar field Θ is taken and it is shown that the obtained results of CS modified gravity simply reduce to those of the general relativity (GR). It is worth mentioning here that the results of dynamical case will reduce to those of GR, available in literature, if the scalar field is taken to be constant.