We investigate the possibility of achieving post-inflationary reheating exclusively through the gravitational interaction in Starobinsky inflation, which itself assumes nothing but gravity. We consider the possibility that the reheating sector couples to gravity via a non-minimal coupling. Our analysis is performed both in a perturbative and in a non-perturbative approach, where particle production is computed from Bogoliubov coefficients.
Our findings indicate that, for a minimal coupling, a reheating temperature T
reh ∼ 108 GeV is obtained, with a reheating duration of approximately 21 e-folds. We also show that non perturbative gravitational production during preheating can lead to maximum temperatures of the order of 1012 GeV. This shows that the gravitational interaction could be the sole responsible for reheating the Universe after inflation, without the need to assume other ad hoc inflaton interactions.