Serial robot manipulators have their servo motors with reduction gears on the link joints. When it comes to hyper-redundant robots, this kind of joint actuation mechanism cannot be implemented since this makes hyper-redundant robots too heavy. Instead, cable driven mechanisms are preferred. However, the positioning accuracy is negatively affected by the cables. This paper addresses the positioning accuracy problem of cable driven hyper-redundant robots by employing a 2-DOF robotic arm whose modules are counter-balanced. While the actuators connected to the base actively do most of the work using cables and springs, light and compact actuators connected to the links produce precise motion. The method will result in compact, light and precise hyper-redundant robotic arms. The above-mentioned procedure governed by a control software including a 2D simulator developed is experimentally proved to be a feasible method to compensate the gravitational torque successfully.