Global warming has prompted globally widespread permafrost thawing, resulting in enhanced greenhouse gas release into the atmosphere. Studies conducted in the Northern Hemisphere reveal an alarming increase in permafrost thawing. However, similar data from Antarctica are scarce. We conducted a 2‐D Deep Electrical Resistivity Tomography (DERT) survey in Taylor Valley, Antarctica, to image the distribution of permafrost, its thicknesses, lower boundaries, and hydrogeology. Results show resistive, discontinuous domains that we suggest represent permafrost units. We also find highly conductive layers (5–10 Ω·m), between 300–350 m and 600–650 m below ground level and a shallower (∼50–100 m depth) conductive layer. The combined data set reveals a broad brine system in Taylor Valley, implying multi‐tiered groundwater circulation: a shallow, localized system linked with surface water bodies and a separate deeper, regional circulation system. The arrangement of these brines across different levels, coupled with the uneven permafrost distribution, underscores potential interplay between the two systems.