Grazing-induced variations in vegetation may either accelerate or reduce soil carbon storage through changes in litter quantity and quality. Here, a three-year field study (2005)(2006)(2007) was conducted in Tibetan alpine meadow to address the responses of surface soil (0-15 cm) organic carbon (SOC) storage in the plant growing season (from May to September) to varying grazing intensity (represented by the residual aboveground biomass, with G 0 , G 1 , G 2 , and G 3 standing for 100%, 66%, 55%, and 30% biomass residual, respectively), and to explore whether grazinginduced vegetation changes depress or facilitate SOC storage. Our results showed that: (i) Higher grazing intensity resulted in lower biomass of grasses and sedges, lower root biomass, and in a change in plant community composition from palatable grasses and sedges to less palatable forbs. (ii) Increased grazing reduced the SOC content and storage with only G 3 showing an SOC loss during the plant growing season. (iii) Soil organic carbon storage exhibited a highly positive correlation with the residual aboveground biomass and root biomass. Our results imply that a grazing-induced reduction in plant biomass productivity and changes in species composition would depress soil carbon storage, and that an increase in grazing pressure can lead to a gradual change of alpine meadow soils from being 'carbon sinks' to become 'carbon sources' .