The Chinese CubeSat Mission, Gamma Ray Integrated Detectors (GRID), recently detected its first gamma-ray burst, GRB 210121A, which was jointly observed by the Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM). This burst is confirmed by several other missions, including Fermi and Insight-HXMT. We combined multi-mission observational data and performed a comprehensive analysis of the burst's temporal and spectral properties. Our results show that the burst is special in its high peak energy, thermal-like low energy indices, and large fluence. By putting it to the E p -E γ,iso relation diagram with assumed distance, we found this burst can be constrained at the redshift range of [0.3,3.0]. The thermal spectral component is also confirmed by the direct fit of the physical models to the observed spectra. Interestingly, the physical photosphere model also constrained a redshift of z ∼ 0.3 for this burst, which help us to identify a host galaxy candidate at such a distance within the location error box. Assuming the host galaxy is real, we found the burst can be best explained by the photosphere emission of a typical fireball with an initial radius of r 0 ∼ 6.7 × 10 7 cm.