“…Devices were assessed for (1) time from arrest to target temperature (i.e., < 34.0 °C), (2) time to target temperature (i.e., time from initiation of cooling to first body temperature < 34.0 °C), (3) cooling rate (i.e., changes in temperature from initiation of cooling to first body temperature < 34.0 °C, expressed as °C/h), (4) number of patients achieving the target temperature; (5) overcooling (i.e., at least one body temperature < 32.0 °C), (6) time spent outside targets (i.e., target is within 32 and 34 °C since the first body temperature < 34.0 °C until the initiation of rewarming; time outside target is expressed as number of hours or the percentage of hours according to the duration of cooling), (7) overshoot (i.e., body temperature after rewarming > 36.0 °C during cooling), (8) rewarming rate (i.e., changes in temperature between the initiation of rewarming to the first temperature > 37.0 °C, expressed as °C/h), and (9) post-TTM fever (i.e., number of patients with at least one body temperature measurement after rewarming exceeding 38.0 °C). Precision was assessed by measuring temperature variability (TV), i.e., the standard deviation (SD) of all temperature measurements in the cooling phase [16]. Main adverse events were collected throughout the hospital stay and reported as defined in the main trial [5].…”