2021 IEEE International Symposium on Information Theory (ISIT) 2021
DOI: 10.1109/isit45174.2021.9517966
|View full text |Cite
|
Sign up to set email alerts
|

Greedy $k$-Center from Noisy Distance Samples

Abstract: We study a variant of the canonical k-center problem over a set of vertices in a metric space, where the underlying distances are apriori unknown. Instead, we can query an oracle which provides noisy/incomplete estimates of the distance between any pair of vertices. We consider two oracle models: Dimension Sampling where each query to the oracle returns the distance between a pair of points in one dimension; and Noisy Distance Sampling where the oracle returns the true distance corrupted by noise. We propose a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 30 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?