Network pruning is an effective approach to reduce network complexity without performance compromise. Existing studies achieve the sparsity of neural networks via time-consuming weight tuning or complex search on networks with expanded width, which greatly limits the applications of network pruning. In this paper, we show that high-performing and sparse sub-networks without the involvement of weight tuning, termed "lottery jackpots", exist in pre-trained models with unexpanded width. For example, we obtain a lottery jackpot that has only 10% parameters and still reaches the performance of the original dense VGGNet-19 without any modifications on the pretrained weights. Furthermore, we observe that the sparse masks derived from many existing pruning criteria have a high overlap with the searched mask of our lottery jackpot, among which, the magnitude-based pruning results in the most similar mask with ours. Based on this insight, we initialize our sparse mask using the magnitude pruning, resulting in at least 3× cost reduction on the lottery jackpot search while achieves comparable or even better performance. Specifically, our magnitude-based lottery jackpot removes 90% weights in the ResNet-50, while easily obtains more than 70% top-1 accuracy using only 10 searching epochs on ImageNet. Our code and pruned models are available at https://github.com/zyxxmu/ lottery-jackpots.