2020
DOI: 10.48550/arxiv.2010.15969
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Greedy Optimization Provably Wins the Lottery: Logarithmic Number of Winning Tickets is Enough

Abstract: Despite the great success of deep learning, recent works show that large deep neural networks are often highly redundant and can be significantly reduced in size. However, the theoretical question of how much we can prune a neural network given a specified tolerance of accuracy drop is still open. This paper provides one answer to this question by proposing a greedy optimization based pruning method. The proposed method has the guarantee that the discrepancy between the pruned network and the original network … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2020
2020
2021
2021

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 28 publications
0
0
0
Order By: Relevance