The Pisha sandstone area in the Yellow River Basin is one of the regions with the most severe soil erosion in China and globally, and its erosion is particularly challenging to control. W-OH, a hydrophilic polyurethane material, possesses controllable degradation properties. It can react with water to achieve soil stabilization and erosion resistance during the curing process. The material has been successfully utilized in erosion control in Pisha sandstone areas. This study aims to investigate the impact of W-OH material on water/fertilizer retention and plant growth through experiments on soil hardness, permeability, soil evaporation, soil column leaching, pot tests, and a small-scale demonstration in practical engineering applications. The results indicate that different concentrations of W-OH solution can effectively permeate Pisha sandstone, solidifying the particles to create a flexible and porous consolidation layer on the surface with a specific depth. As the W-OH concentration (3%, 4%, and 5%) increases, the harnesses of the consolidation layer also increase but remain below 1.5 kPa, which does not impede plant root growth. The soil evaporation rate decreased by approximately 45.2%, 45.8%, and 50.3% compared to the control group. The reduction rates of cumulative total nitrogen (TN) content are around 43.57%, 48.14%, and 63.99%, and, for cumulative total phosphorus (TP), are approximately 27.96%, 45.70%, and 61.17% under the 3%, 4%, and 5% concentrations of W-OH solution, respectively. In the pot tests, concentrations of W-OH solution below 5% are suitable for germination and growth of monocotyledons, while the optimal concentration for dicotyledons is around 3%. In the demonstration, the vegetation coverage of the treated gully increases by approximately 11.35%. This research offers a promising and effective approach to enhance ecological restoration in Pisha sandstone areas.