Hydrogen is the most abundant gas in the universe and is classified by the World Energy Organization as the cleanest fuel in the world compared to other energy products. Therefore, the hope hangs upon it in achieving the zero fuel emissions strategy, which adopted by the largest countries in the world. Also, it is believed that by 2050, hydrogen consumption will represent 24 % of the global energy sector, with investments estimated at 2.5 trillion dollars, compared to only 139 billion dollars at present. There are three types of hydrogen (gray, blue and green) classified based on their production methods and carbon content. Gray hydrogen is usually produced by burning natural gas at high temperatures and once the carbon is removed or captured, the gray hydrogen turns into blue hydrogen. As for green hydrogen with zero emissions, it is produced through the electrolysis of water or by using renewable energy sources such as solar cell, wind energy, etc. to avoid any emissions during the production stages. Despite the efficiency of green hydrogen compared to other types, its price remains a major obstacle in the promotion and marketing, which is estimated at 3.5 Euro/kg, compared to 1.5 Euro/kg for blue hydrogen. In addition to some other obstacles related to infrastructure and raw materials used in the production stages. Recently, and in order to remove all these obstacles, the leading countries in the energy sector pumped more investments to study all these obstacles and assess the current hydrogen market, which in turn leads to the acceleration of the upscaling of hydrogen production. In this context, this research was developed to study all these current and future challenges. In addition to discussing the traditional and modern methods of its production. Besides taking a look at the projects under implementation in this regard.